Leyes de la Termodinámica

Publicado: noviembre 15, 2013 en Cuarto Periodo

Primera ley de la termodinámica

Permítase que un sistema cambie de un estado inicial de equilibrio , a un estado final de equilibrio , en un camino determinado, siendo el calor absorbido por el sistema y el trabajo hecho por el sistema. Después calculamos el valor de . A continuación cambiamos el sistema desde el mismo estado hasta el estado final , pero en esta ocasión por u n camino diferente. Lo hacemos esto una y otra vez, usando diferentes caminos en cada caso. Encontramos que en todos los intentos es la misma. Esto es, aunque y separadamente dependen del camino tomado, no depende, en lo absoluto, de cómo pasamos el sistema del estado al estado , sino solo de los estados inicial y final (de equilibrio).

Del estudio de la mecánica recordará, que cuando un objeto se mueve de un punto inicial a otro final , en un campo gravitacional en ausencia de fricción, el trabajo hecho depende solo de las posiciones de los puntos y no, en absoluto, de la trayectoria por la que el cuerpo se mueve. De esto concluimos que hay una energía potencial, función de las coordenadas espaciales del cuerpo, cuyo valor final menos su valor inicial, es igual al trabajo hecho al desplazar el cuerpo. Ahora, en la termodinámica, encontramos experimentalmente, que cuando en un sistema ha cambiado su estado al , la cantidad dependen solo de las coordenadas inicial y final y no, en absoluto, del camino tomado entre estos puntos extremos. Concluimos que hay una función de las coordenadas termodinámicas, cuyo valor final, menos su valor inicial es igual al cambio en el proceso. A esta función le llamamos función de la energía interna.

Representemos la función de la energía interna por la letra . Entonces la energía interna del sistema en el estado , es solo el cambio de energía interna del sistema, y esta cantidad tiene un valor determinado independientemente de la forma en que el sistema pasa del estado al estado f: Tenemos entonces que:

 

Como sucede para la energía potencial, también para que la energía interna, lo que importa es su cambio. Si se escoge un valor arbitrario para la energía interna en un sistema patrón de referencia, su valor en cualquier otro estado puede recibir un valor determinado. Esta ecuación se conoce como la primera ley de la termodinámica, al aplicarla debemos recordar que se considera positiva cuando el calor entra al sistema y que será positivo cuando el trabajo lo hace el sistema.

A la función interna , se puede ver como muy abstracta en este momento. En realidad, la termodinámica clásica no ofrece una explicación para ella, además que es una función de estado que cambia en una forma predecible. ( Por función del estado, queremos decir, que exactamente, que su valor depende solo del estado físico del material: su constitución, presión, temperatura y volumen.) La primera ley de la termodinámica, se convierte entonces en un enunciado de la ley de la conservación de la energía para los sistemas termodinámicos.

La energía total de un sistema de partículas , cambia en una cantidad exactamente igual a la cantidad que se le agrega al sistema, menos la cantidad que se le quita.

Podrá parecer extraño que consideremos que sea positiva cuando el calor entra al sistema y que sea positivo cuando la energía sale del sistema como trabajo. Se llegó a esta convención, porque fue el estudio de las máquinas térmicas lo que provocó inicialmente el estudio de la termodinámica. Simplemente es una buena forma económica tratar de obtener el máximo trabajo con una maquina de este tipo, y minimizar el calor que debe proporcionársele a un costo importante. Estas naturalmente se convierten en cantidades de interés.

Si nuestro sistema sólo sufre un cambio infinitesimal en su estado, se absorbe nada más una cantidad infinitesimal de calor y se hace solo una cantidad infinitesimal de trabajo , de tal manera que el cambio de energía interna también es infinitesimal. Aunque y no son diferencias verdaderas, podemos escribir la primera ley diferencial en la forma:

.

Podemos expresar la primera ley en palabras diciendo: Todo sistema termodinámico en un estado de equilibrio, tiene una variable de estado llamada energía interna cuyo cambio en un proceso diferencial está dado por la ecuación antes escrita.

La primera ley de la termodinámica se aplica a todo proceso de la naturaleza que parte de un estado de equilibrio y termina en otro. Decimos que si un sistema esta en estado de equilibrio cuando podemos describirlo por medio de un grupo apropiado de parámetros constantes del sistema como presión ,el volumen, temperatura, campo magnético y otros la primera ley sigue verificándose si los estados por los que pasa el sistema de un estado inicial (equilibrio), a su estado final (equilibrio), no son ellos mismos estados de equilibrio. Por ejemplo podemos aplicar la ley de la termodinámica a la explosión de un cohete en un tambor de acero cerrado.

Hay algunas preguntas importantes que no puede decir la primera ley. Por ejemplo, aunque nos dice que la energía se conserva en todos los procesos, no nos dice si un proceso en particular puede ocurrir realmente. Esta información nos la da una generalización enteramente diferente, llamada segunda ley de la termodinámica, y gran parte de los temas de la termodinámica dependen de la segunda ley.

 

 

 

 

 

 

 

Segunda ley de la termodinámica.

Las primeras máquinas térmicas construidas, fueron dispositivos muy eficientes. Solo una pequeña fracción del calor absorbido de la fuente de la alta temperatura se podía convertir en trabajo útil. Aun al progresar los diseños de la ingeniería, una fracción apreciable del calor absorbido se sigue descargando en el escape de una máquina a baja temperatura, sin que pueda convertirse en energía mecánica. Sigue siendo una esperanza diseñar una maquina que pueda tomar calor de un depósito abundante, como el océano y convertirlo íntegramente en un trabajo útil. Entonces no seria necesario contar con una fuente de calor una temperatura más alta que el medio ambiente quemando combustibles. De la misma manera, podría esperarse, que se diseñara un refrigerador que simplemente transporte calor, desde un cuerpo frío a un cuerpo caliente, sin que tenga que gastarse trabajo exterior. Ninguna de estas aspiraciones ambiciosas violan la primera ley de la termodinámica. La máquina térmica sólo podría convertir energía calorífica completamente en energía mecánica, conservándose la energía total del proceso. En el refrigerador simplemente se transmitiría la energía calorifica de un cuerpo frío a un cuerpo caliente, sin que se perdiera la energía en el proceso. Nunca se ha logrado ninguna de estas aspiraciones y hay razones para que se crea que nunca se alcanzarán.

La segunda ley de la termodinámica, que es una generalización de la experiencia, es una exposición cuyos artificios de aplicación no existen. Se tienen muchos enunciados de la segunda ley, cada uno de los cuales hace destacar un aspecto de ella, pero se puede demostrar que son equivalentes entre sí. Clausius la enuncio como sigue: No es posible para una máquina cíclica llevar continuamente calor de un cuerpo a otro que esté a temperatura más alta, sin que al mismo tiempo se produzca otro efecto (de compensación). Este enunciado desecha la posibilidad de nuestro ambicioso refrigerador, ya que éste implica que para transmitir calor continuamente de un objeto frío a un objeto caliente, es necesario proporcionar trabajo de un agente exterior. Por nuestra experiencia sabemos que cuando dos cuerpos se encuentran en contacto fluye calor del cuerpo caliente al cuerpo frío. En este caso, la segunda ley elimina la posibilidad de que la energía fluya del cuerpo frío al cuerpo caliente y así determina la dirección de la transmisión del calor. La dirección se puede invertir solamente por medio de gasto de un trabajo.

Kelvin (con Planck) enuncio la segunda ley con palabras equivalentes a las siguientes: es completamente imposible realizar una transformación cuyo único resultado final sea el de cambiar en trabajo el calor extraído de una fuente que se encuentre a la misma temperatura. Este enunciado elimina nuestras ambiciones de la máquina térmica, ya que implica que no podemos producir trabajo mecánico sacando calor de un solo depósito, sin devolver ninguna cantidad de calor a un depósito que esté a una temperatura más baja.

Para demostrar que los dos enunciados son equivalentes, necesitamos demostrar que si cualquiera de los enunciados es falso, el otro también debe serlo. Supóngase que es falso el enunciado de Clausius, de tal manera que se pudieran tener un refrigerador que opere sin que se consuma el trabajo. Podemos usar una máquina ordinaria para extraer calor de un cuerpo caliente, con el objeto de hacer trabajo y devolver parte del calor a un cuerpo frío.

Pero conectando nuestro refrigerador “perfecto” al sistema, este calor se regresaría al cuerpo caliente, sin gasto de trabajo, quedando así utilizable de nuevo para su uso en una máquina térmica. De aquí que la combinación de una maquina ordinaria y el refrigerador “perfecto” formará una máquina térmica que infringe el enunciado de Kelvin-Planck. O podemos invertir el argumento. Si el enunciado Kelvin-Planck fuera incorrecto, podríamos tener una máquina térmica que sencillamente tome calor de una fuente y lo convierta por completo en trabajo. Conectando esta máquina térmica “perfecta” a un refrigerador ordinario, podemos extraer calor de un cuerpo ordinario, podemos extraer calor de un cuerpo caliente, convertirlo completamente en trabajo, usar este trabajo para mover un refrigerador ordinario, extraer calor de un cuerpo frío, y entregarlo con el trabajo convertido en calor por el refrigerador, al cuerpo caliente. El resultado neto es una transmisión de calor desde un cuerpo frío, a un cuerpo caliente, sin gastar trabajo, lo infringe el enunciado de Clausius.

La segunda ley nos dice que muchos procesos son irreversibles. Por ejemplo, el enunciado de Clausius específicamente elimina una inversión simple del proceso de transmisión de calor de un cuerpo caliente, a un cuerpo frío. Algunos procesos, no sólo no pueden regresarse por sí mismos, sino que tampoco ninguna combinación de procesos pueden anular el efecto de un proceso irreversible, sin provocar otro cambio correspondiente en otra parte.

 

Tercera ley de la termodinámica.

En el análisis de muchas reacciones químicas es necesario fijar un estado de referencia para la entropia. Este siempre puede escogerse algún nivel arbitrario de referencia cuando solo se involucra un componente; para las tablas de vapor convencionales se ha escogido 320F. Sobre la base de las observaciones hechas por Nernst y por otros, Planck estableció la tercera ley de la termodinámica en 1912, así:

la entropia de todos los sólidos cristalinos perfectos es cero a la temperatura de cero absoluto.

Un cristal “perfecto” es aquel que esta en equilibrio termodinámica. En consecuencia, comúnmente se establece la tercera ley en forma más general, como:

La entropia de cualquier sustancia pura en equilibrio termodinamico tiende a cero a medida que la temperatura tiende a cero.

La importancia de la tercera ley es evidente. Suministra una base para el calculo de las entropías absolutas de las sustancias, las cuales pueden utilizarse en las ecuaciones apropiadas para determinar la dirección de las reacciones químicas.

Una interpretación estadística de la tercera ley es más bien sencilla, puesto que la entropia se ha definido como:

 

En donde k es la constante de Bolzmall es la probabilidad termodinámica. En vista de la anterior disertación, la tercera ley equivale a establecer que:

cuando 0.

Esto significa que sólo existe una forma de ocurrencia del estado de energía mínima para una sustancia que obedezca la tercera ley.

Hay varios casos referidos en la literatura en donde los cálculos basados en la tercera ley no están desacuerdo con los experimentos. Sin embargo, en todos los casos es posible explicar el desacuerdo sobre la base de que la sustancia no es “pura”, esto es, pueda haber dos o más isótopos o presentarse moléculas diferentes o, también, una distribución de no equilibrio de las moléculas. En tales casos hay más de un estado cuántico en el cero absoluto y la entropia no tiende a cero.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s